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Transport in disordered graphene nanoribbons
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We study electronic transport in graphene nanoribbons with rough edges. We first consider a model of weak
disorder that corresponds to an armchair ribbon whose width randomly changes by a single unit cell size. We
find that in this case, the low-temperature conductivity is governed by an effective one-dimensional hopping
between segments of distinct band structure. We then provide numerical evidence and qualitative arguments
that similar behavior also occurs in the limit of strong uncorrelated boundary disorder.
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I. INTRODUCTION

Since the invention of the method for production
graphene,! many creative ideas for physical effects and de-
vices have been put forth.? Whereas early papers emphasized
unusual electron properties of graphene as compared with
ordinary metallic and semiconductor materials, it had been
soon realized that graphene is a promising material for
implementation of previously known physical devices with
considerably improved characteristics. One of the possible
applications would be in semiconductor technology: excel-
lent mechanical properties, easily tunable electron concentra-
tion, zero nuclear spin, and simple production are among the
advantages that make graphene a much sought after material.
However, the drawback preventing the use of graphene for
semiconducting applications is exactly what is usually con-
sidered to be its main feature—the absence of a gap in the
spectrum. In the absence of the gap, it is impossible to make
even the simplest conventional electronic devices. For in-
stance, a graphene p-n junction does not rectify current, even
though it has some other interesting properties due to the
Klein tunneling.® Similarly, hybrid graphene-normal-metal
systems are conducting for arbitrary gate voltage applied to
graphene.* The only known way to open a gap in monolayer
graphene is to use confined geometries: graphene quantum
dots’ and graphene nanoribbons (GNRs).

The electronic structure of ideal GNR is theoretically well
established. It is very sensitive to the ribbon geometry, i.e.,
orientation relative to the crystal axes and their exact
width.®~ Within a tight-binding model with only nearest-
neighbor hopping (NNH), GNR with zig-zag edges have flat
near-zero-energy bands of extended edge states, while rib-
bons with armchair edges, depending on the precise width,
can be either metallic or semiconducting with the gap in-
versely proportional to the GNR width. Numerical studies'’
show that passivation of the edges of ideal GNR—chemical
bonding of edge carbon atoms with hydrogen—may open a
small energy gap that does not scale with the GNR width.

Recently, first experimental observations of transport in
GNR have been reported.!'"!> GNR with widths in the range
of about 10-100 nm and lengths in the micrometer range
have been studied. The fabrication procedure does not yet
allow control of the GNR width with atomic precision (al-
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though chemical fabrication'> may eventually yield con-
trolled edge fabrication). As a result the edges are disordered
on the atomic length scale, as well as show longer-range
width variation of a few nanometers. For narrow-enough rib-
bons (=50 nm) an unambiguous signature of the geomerric
gap E, scaling with the inverse average ribbon width has
been extracted from the gate voltage and temperature depen-
dencies of conductivity.'"!> In particular, in Ref. 11, in a
broad range of temperatures, T, conductivity scales as e ¢/,
The measured gap is a smooth function of the ribbon width
and is insensitive to the GNR orientation relative to the crys-
tal axes. Also, 1/f current noise has been observed at low
frequencies, f<<100 Hz, with the intensity proportional to
the GNR width.!!

These experimental results are definitely inconsistent with
the theory for ideal GNR that predicts different behavior de-
pending on the orientation, typically with many low-energy
states. The observed effects are clearly due to disorder. In-
deed, it is natural to expect that any disorder, bulk or bound-
ary, should lead to Anderson localization and open a trans-
port gap; however, one would expect that this gap should be
defined by the strength of disorder rather than by the GNR
width.

In this work we provide a qualitative resolution to this
apparent puzzle by showing that electronic properties of the
disordered GNR are indeed very different from the clean
GNR. We demonstrate that for the states near the middle of
the band, edge disorder leads to segmentation of the wave
functions into blocks of length on the order of GNR width.
Thus, at low temperatures, the system maps onto an effective
one-dimensional (1D) hopping insulator.'® We illustrate this
behavior first with a model where disorder is introduced
through slowly fluctuating ribbon width, which allows more
direct numerical and analytical analyses (Sec. II). Then we
generalize the results to the experimentally relevant case of
strong disorder (Sec. III). Discussion and conclusions are
presented in Sec. IV.

II. WEAK DISORDER

Let us consider an armchair GNR. An ideal ribbon of the
width W, measured in units of minimal carbon-carbon dis-
tance, a,, is metallic (no gap) for W=(3N+1)y3, and semi-
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FIG. 1. (Color) Structure of the electronic wave functions in a
“weakly disordered” armchair GNR. Periodic boundary conditions
are applied in the horizontal direction. In our convention, the nar-
row segments have width W=413 and in the limit of infinite length
would have no band gap; the surrounding regions (width W=5\f‘3)
for an infinitely long ribbon would have a gap E,=2X0.169¢
around zero energy (the middle of the GNR 7 band). The radii of
the circles are proportional to the site amplitudes of the wave func-
tion, with the color representing sign. The top plot corresponds to
the lowest-energy state inside the gap, £=-0.096¢, spatially local-
ized in the left (longer) metallic segment; the middle to the low-
energy state in the right (shorter) metallic segment, E=-0.131¢; and
the bottom is a delocalized state well outside the gap, E=-0.4971.
Note the abrupt change in the localized wave functions’ amplitude
at the “interface” and rather uniform amplitude across the ribbon.

conducting (W1th gap E,~t/W) for W= 33N and
W=(3N+2)3.° Here, 1 is the graphene nearest-neighbor
hopping matrix element (we neglect the next-nearest-
neighbor hopping which causes slight particle-hole asymme-
try) and N is an integer. Weak disorder can be introduced as
geometric fluctuations of the ribbon width such that the “dis-
ordered” ribbon is comprised of ideal segments of random
length of order L, with width changing from segment to seg-
ment. We assume that L>W. An example of a “disordered”
configuration of this kind is shown in Fig. 1. While this
situation has not been yet realized experimentally, it has the
advantage of its analysis being straightforward, and, as we
will argue, the behavior is related to the experimentally rel-
evant case of strong disorder. If the length of each segment is
longer than its width, to the lowest order, one can consider
individual band structure of each segment separately. De-
pending on the width, some of the segments are nearly me-
tallic, with the finite size gap of about 7/ L, while others are
“insulating” with the gap ¢#/W. In Fig. 1 we show the results
of numerical diagonalization of the tight-binding graphene
Hamiltonian—representative wave functions in different re-
gions. Note that although the segmentation is caused by the
surface defect (change of the width by just one row of at-
oms), the wave functions show high degree of uniformity
across the ribbon and rather sharp confinement to the respec-
tive regions along the ribbon. Thus, at low energies
(|E|<t/W) it is natural to represent the system by a one-
dimensional hopping model,
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FIG. 2. (Color online) The lowest-energy state in a GNR as a
function of length L of a “metallic” constriction surrounded by an
“insulator.” The configuration is similar to the one in Fig. 1. The
total length of the ribbon used in simulation is 120a, (with periodic
boundary conditions along horizontal axis). The results presented
are for two GNR widths, W= 53 and W=1113, with W=4.3 and
Ww=10y 3, respectively, in the metallic regions. In the inset we fit the
energy to the form Eo (L+Ly)~". The offset Ly, appears due to the
leakage of the wave function from the metallic regions into the
insulating ones. As expected (see text), Ly~ W.

H= Zea O‘Tc“+2t“ﬁ pate ﬁ+Hc (1)
ia,jB

Here, the operator E?T(élf’) creates (destroys) electron in the
metallic “grain” i in the orbital a.
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FIG. 3. (Color) Structure of the electronic wave functions in a
strongly disordered zig-zag GNR. The disorder is generated by ran-
domly eliminating half of carbon atoms at the edges of GNR. Pe-
riodic boundary conditions are applied in the horizontal direction.
The energies of the states, from top down, E=-0.071¢, —0.089¢, and
—0.255t. Note how the confinement length increases away from the
center of the band (E=0). The typical confinement length at the
energies inside the gap is on the order of the ribbon width.
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To complete the formulation of effective model (1) we
need to determine the distributions of the on-site energies €*
and intersite hopping matrix elements tf‘-B. For simplicity we
assume that the average length of the segments, both insulat-
ing and metallic, is the same, L,,. The low-energy spectrum
in the metallic segments follows from the Dirac dispersion of
the infinite metallic armchair GNR,” e=cl|k|, where
c=3ta,/2 and k is the momentum along GNR. The levels in
a given metallic segment of length L are therefore approxi-
mately equidistant, with the average level spacing ~¢/L. In
Fig. 2 we show the result of a tight-binding calculation for
the lowest-energy state as a function of the length of a me-
tallic segment embedded in the insulating GNR. Indeed we
find that the energy scales approximately as 1/L. An even
better fit is obtained by using the form 1/(L+Ly) which
takes into account the leakage of the wave function from the
metallic regions into surrounding insulating ones. Note that
Ly= W. If the lengths L; for all grains were equal, the level
structures in all grains would be identical (apart from the
small splitting caused by intergrain tunneling). However, for
a distribution of lengths, the energy levels in different grains
are likely to be out of registry by the amount ~¢/L,,.

We now evaluate the tunneling matrix elements #;; be-
tween low-energy states in metallic segments. Tunneling oc-
curs through the intermediate states in the insulating regions.
The states just outside the gap are particularly important for
tunneling. Near the gap edge the dispersion is quadratic,
€= \J’czk2+(Eg/2)2zEg/2+c2k2/Eg. This corresponds to the
effective mass in the insulating regions m*~ (Wa*t)™'. The
tunneling amplitude through a barrier of height £, and length
D can be estimated using the WKB approximation as e~*?'W,
where « is a numerical coefficient of order 1. We have also
verified this by a direct tight-binding calculation of the tun-
nel splitting of energy levels in two identical metallic seg-
ments separated by an insulating segment of variable length.

From the distributions of € and t,-“jﬁ, it follows that for
L,,> W, the level spacing in the metallic grains is larger than
the tunneling amplitude between the neighbors, making it
impossible to have metallic, i.e., band, conduction. The sys-
tem is a one-dimensional example of a simple impurity band
insulator, a standard model used to describe lightly doped
compensated semiconductors.!” The finite-temperature con-
ductivity of such insulator can be evaluated by standard
techniques, '

—anlL,

o~e av! W=/(nL,,T) , (2)

where T is the temperature and 7 is the length of the optimal
jump. By minimizing the exponent, we find that
Nop=\IW/ (aLiUT). Hence there is a crossover from the

NNH (n,,,,=1) to variable range hopping (n,,,> 1, VRH) at
temperature 7™~ tW/ Lﬁv,
=2\t (WT) for T<T* .
o~
e La/ W=D for T* < T <t/L,,

Note that 7°<t/W, and thus both behaviors are possible
within our model. At temperatures higher that #/L,, multiple
states in the metallic regions have to be included. We do not
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consider here other regimes of one-dimensional hopping'®
that can become relevant at very low temperatures.

III. STRONG DISORDER

We now turn to the strong disorder case, when the bound-
ary is randomized at the atomic scale (this models the situa-
tion when some atoms are cut out or replaced by other at-
oms, e.g., oxygens, in the process of fabrication). Yet, we
assume that the relative variation in the ribbon width intro-
duced by disorder is small. This is different from the near-
granular case considered in Ref. 19.

An example of a “strongly” disordered configuration that
corresponds to small relative variation in the ribbon width is
shown in Fig. 3. We chose a perfect zig-zag nanoribbon as
the reference structure. Ideal zig-zag nanoribbons are always
metallic, for any ribbon width, due to the presence of the
edge states.® We observe that edge disorder (here generated
by eliminating at random half of the sites along the edges)
leads to the wave-function localization. However, since dis-
order is now short correlated, the wave functions no longer
have a typical extent along the ribbon but rather can be either
more or less localized. We find numerically that the wave
functions  corresponding to the low-energy states
(|E|<t/W) that are highly localized along the direction of
the boundary [L<W, e.g., Fig. 3(a)] also do not penetrate
deep inside the ribbon, having large amplitude only near the
surface. On the other hand, states that are more extended
along the ribbon also penetrate deeper into the bulk. This
effect can be traced back to the behavior of the edge states in
zig-zag GNR: the wave vector along the ribbon for these
states is approximately equal to their exponential decay
length into the bulk. In effect, in the absence of next-nearest-
neighbor hopping, one can have states with very low energy,
~te™W4 localized over the distance of about a single unit
cell near the ribbon edge. The number of such states within a
segment of length W can be easily estimated to be
|K=K'|/(27/aW) ~ W; that is, each boundary atom can sup-
port one highly localized low-energy state. Their spectrum
which can be derived from the dispersion of the ideal ribbon
surface states is” E~t exp(—kW) for kW= 1, where k is the
wave-vector deviation from the Dirac point. This spectrum
provides the density of states which behaves as E~! at
E<t/W.

This extremely high low-energy density of states is obvi-
ously an artifact of our model and disappears if the hopping
between next-nearest neighbors (NNN) on the graphene lat-
tice is taken into account. It is characterized by the overlap
integral ¢/ which in graphene approximately equals to 0.2z.
In the following, we assume that ' >¢/W which is the case
for all graphene nanoribbons studied in the experiments. If
the NNN overlap is taken into account, the edge states are
hybridized and form a band of the width ~¢’. Thus, the
(one-dimensional) density of states in the gap |E|<t/W is
approximately constant and equal to one state per surface
atom per ¢'. Since the localization length is governed by the
energy distance to the next subband, it is nearly independent
of ¢ and still is approximately equal to W. We therefore
coarse grain over the ribbon elements of size WX W to ob-
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tain the low-energy level spacing within a coarse-grained
element AE~1t"/W. Now, we can formulate the variable
range hopping conductivity between these elements as

o~ e—an—z’/(nWT)_ (4)

Optimizing over n, we find two regimes,

e 2Na'WT for T<T,

’
o!'1(WD)

(5)

g~ >
for T.<T<tW

with the crossover temperature 7.=t'/W<t/W. Again,
higher-temperature (top line) and lower-temperature (bottom
line) ranges correspond to VRH and NNH, respectively.

On the experimental side, Chen et al.'! found that, e.g., in
20-nm-wide GNR, which has a gap of 28 mV, at relatively
high temperatures, between 50 and 100 K, transport is acti-
vated, oxeF¢/T. The data are lacking at intermediate tem-
peratures; however, the single low-temperature data point at
4 K shows conductivity much higher than would be expected
from simple activated hopping. This may reflect a crossover
from the nearest to variable range hopping. Our estimate for
the crossover temperature is about 5 K, which is consistent
with the experimental results. More detailed experimental
data in the intermediate temperature regime should allow
direct test of our predictions. It has also been found that the
experimental size of the gap is smaller than ¢/ W, which may
be consistent with our value 7'/ W.

IV. DISCUSSION AND CONCLUSIONS

The alternative explanation of experimental results was
proposed in a model representing a GNR with very strong
interface disorder as a chain of quantum dots, hosting local-
ized electron states.'® It was suggested by the authors that the
experimentally observed gap has to do with charging energy
of the “quantum dots.” Indeed, recent experiments'*!> indi-
cate that there are local charging centers in graphene nanor-
ibbons. Compared to the case studied in Ref. 19, both cases
that we considered above correspond to at most mild disor-
der. We therefore address now how the Coulomb interaction
will affect our results.

The Coulomb interaction can modify low-temperature
hopping conductivity. Interaction leads to opening of the soft
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Coulomb gap around the Fermi surface, which enters as an
energy cost inversely proportional to the length of the hop.!”
Thus in the presence of the Coulomb interaction, the expres-
sion for conductivity has to be modified as

o~ e—an—t'/(nWT)—ez/(snagWT) (6)

Since ez/agt~ 1 in graphene, the Coulomb cost will become
relevant if the dielectric constant of the embedding medium e
is smaller than #/¢' ~5. While the functional form of conduc-
tivity in this case remains the same as in Eq. (5), the energy
scale that defines the gap is different, t'/W— ez/(eagW).

Thus, for freely suspended graphene the transport is in
fact expected to be dominated by the soft Coulomb blockade.
On the other hand, placing graphene in the vicinity of high-&
medium or metallic gate would reduce the Coulomb interac-
tion strength and range,”” leading to crossover to Mott’s
VRH.

Finally, we note that the 1/f noise observed by Chen et
al.' may also be consistent with the scenario presented here;
that is, it may be intrinsic rather than be caused by the charge
fluctuations in the substrate, as was suggested in Ref. 11.
Due to the presence of an exponentially broad distribution of
the tunneling rates in the hopping transport, the experimen-
tally observed Hooge relation?! between the low-frequency
current noise and the dc current, Ii/lzzA(w,T)/w, can be
naturally expected.?? Straightforward application of the Shk-
lovskii argument®? to one dimension leads to Hooge’s param-
eter Axexp(—BT) in the low-temperature (VRH) regime and
approximately constant A at high temperatures (NNH).
Whether the 1/f noise is indeed intrinsic can be tested by
varying the substrate properties, or performing measurement
on a suspended GNR.?
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